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General relativity and conformal invariance: 
I1 Non-existence of black holes 

G J Suggett 
Dept. of Applied Maths and Astronomy, University College, PO Box 78, Cardiff CF1 1XL: 

Received 31 January 1975, in final form 1 September 1978 

Abstract. In  general relativity there are certain singularities, like the initial singularity of the 
Friedmann cosmologies, which are due to the presence in the metric of a conformal factor 
which becomes zero. Using the version of the general relativity field equations produced in 
paper I ,  i t  is shown that there is such a singularity outside the horizon of a Schwarzchild 
black hole. This means that the horizon, and its interior, are mathematical constructs which 
have no physical meaning. 

1. Conformal singularities 

It was argued in a previous paper (Suggett 1979, to be referred to as I) that invariance 
under conformal transformations has to be regarded as an integral part of general 
relativity in just the same way as invariance under coordinate transformations. 

When we actually attempt to solve any particular problem we have to choose a 
coordinate frame in which to work. In just the same way we also have to choose a 
conformal frame. 

Singularities may be introduced into the solution by a bad choice of coordinate 
system. In the same way a bad choice of conformal frame may also introduce 
singularities. 

Consider, for instance, the following situation. Suppose we choose a particular 
conformal frame and obtain a solution which, by suitable coordinate transformations, 
can be put in the form: 

ds2 = S 2 ( 5 )  df2  O < [ < C C  (1) 
where the coordinate 5 is such that S ( 5 )  + 0 as 5 + 0 and the metric ds^2 is defined for a 
larger range of 5, i.e. - K < 5 < 00 where K is some positive constant or CO. 

This situation could be looked at in either of two ways: 
(i) We could say that it is the metric ds which has physical significance together with 

its singularity at 5 = 0, and that the metric df is derived from it by a singular conformal 
transformation, which cancels out the singularity in the metric and thus allows it to be 
extended. In this point of view the extension has no physical significance. 

(ii) On the other hand, we could argue that the metric df is the one that has physical 
significance and that ds is obtained from it by a singular transformation which creates an 
unphysical singularity and also cuts off part of the space. A classic example of this 
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situation is in cosmology, where the Robertson-Walker metrics are solutions of the 
general relativity field equations (in the conformal frame where particle masses are 
constant-which we called in I frame A) and can be written in the form 

where S (  T )  = 0 for T = 0. In this case the conventional point of view would be (i) above 
in which the singularity is regarded as real, and only the region T > 0 of dsItatic has 
physical significance. Hoyle and Narlikar have however argued for the other point of 
view-that dsZtatlc in its full extension should be taken as physical and the singularity as 
unphysical. (Hoyle and Narlikar 1972a, b, c, 1974, Hoyle 1973, 1975, Narlikar 1977, 
Narlikar and Kembhavi 1977). 

We shall show in this paper that a similar sort of behaviour occurs near a black hole. 
We shall demonstrate that in Islam’s frame B, described in I, the exterior metric for a 
spherically symmetric body takes the form 

and the radius r = ro is outside the horizon. 
In this case the conventional point of view would be given by (ii) above-that frame 

B is unphysical, that the singularity it predicts is also unphysical, and that it is legitimate 
to extend physical space to the region r < ro to obtain the horizon and the central 
singularity of the usual Schwarzchild solution. 

The point of view taken in this paper is that (i) is correct, not only for cosmology, but 
in the black hole situation as well. The places where S + 0 are real singularities, and the 
metric cannot be extended beyond them (as mentioned above this is the conventional 
point of view in cosmology, but Hoyle and Narlikar have taken the opposite viewpoint. 
For a critical account of their ideas see Suggett (1976)). If one accepts that the metric 
should not be extended beyond the S = 0 surface then the conventional idea of a black 
hole is non-physical, since the horizon is in the region beyond the edge of physical 
space-time. 

We shall define a singularity, like those discussed here, which can be removed by a 
suitable (if unallowable) choice of conformal frame, to be a conformal singularity. The 
‘big bang’ is one such singularity, and as we shall show, the true end-state of gravita- 
tional collapse is another. One might possibly conjecture that all space-time singulari- 
ties have this form (cf Narlikar and Kembhavi 1977). 

2. Allowable frames 

How, in a situation like this, is one to decide whether to accept point of view (i) or (ii)? 
The answer is that one must decide which of the conformal frames in question is an 
allowable frame. 

An allowable frame was defined in I as a conformal frame associated with a choice of 
length unit which never becomes zero or infinite. This is a reasonable requirement for a 
length unit, since nothing can be measured against a standard which is itself vanishingly 
small or infinitely large, and it thus seems reasonable to regard conformal frames 
associated with length units that break this condition as being non-allowable. 
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General relativity is usually written in conformal frame A, which is defined by the 
requirement that particle masses are always constant. However, it was shown in I that 
for localised distributions of matter there is some doubt about the allowability of frame 
A, and that in order to discuss such problems it is better to use Islam’s frame B, defined 
by the requirement that when the mass of a local particle is split into parts which can be 
regarded as being generated locally, and as being due to non-local interactions 
respectively it  is the non-local part that is constant. This means that in this frame a local 
problem can be solved in purely local terms without any explicit interaction from 
non-local sources. 

Frame B is allowable. and we shall show below that the metric round a spherical 

where 
(4) 

r being the isotropic radial coordinate of the Schwarzchi I metric. S ( r )  has a zero at a 
radius r = ro which we shall show is outside the horizon of the Schwarzchild metric. 
Thus in accordance with what we said above, frame A is non-allowable and the parts of 
the frame A manifold with r < ro aie non-physical. This includes the horizon. 

3. Proof that the Schwarzchild black hole is unphysical 

We are looking for the metric in frame B which is conformal to the spherically 
symmetric Schwarzchild solution in frame A. Let us write the metric in frame B in 
isotropic coordinates. 

ds2 = e“  dt2 - eA (dr2 + rz de2 + r2 sin2 6 d42)  

(These coordinates are particularly useful in this context because, under a conformal 
transformation, they retain the property of being isotropic-whereas the radial ‘area’ 
coordinate, defined such that 477~’ is the surface area of a sphere of coordinate radius p 
in which the Schwarzchild metric is usually written, is different in different conformal 
frames.) 

The conformal transformation which takes us from frame B to frame A is given by 

( 5 )  1 2 2  dsf\ = A  dsg 

where A =  1 +a/ao= 1 + X  

where we denote a/uo by X .  So, in frame A, 

d s 2 = e ” ( l + X ) 2 d t 2 - e A ( l + X ) 2 ( d r 2 + r 2  de2+rzs in2  8 d 4 2 )  (6) 

which must therefore be the Schwarzchild metric in isotropic co-ordinates: 

ds2 = ( - m/2r)2 dt2 - (1 + 3 4 ( d r 2  + r2 de2 + r2  sin2 e d42) .  
1 + m/2r (7 )  
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So we must make the following identifications for the metric coefficients: 

,, ( 1 + m / 2 r ) ~  
( 1 + x ) 2  . e =  

We thus see that the metric in frame B is given by 

ds2 = s2 ( r )  ds?Schwarzchild) 
(9) 

where S2(r) = 1/(1 +x12. 
So to determine S we need to obtain X, which as derived in I, satisfies in frame B in 
vacuo 

1 
02x = 0. (10) 

After a first integration we obtain in the isotropic co-ordinates 

r2 exp[t(v + A ) ]  dX/dr =constant. 

We shall show in the next section that the constant has to be negative, and for reasons 
also explained below we shall therefore write it as 

constant = - Km/3 K>O (12) 
so that 

r2 exp[:( v + A ) ]  dX/dr = - Km/3 

where v and A are given by equation (8), i.e. 

r2(1 -m2/4r2)  d X  Km -= -- 
( l + X ) '  dr 3 '  

Equation (14) can easily be integrated and, using the boundary condition X + 0 at 
r + CD, leads to 

i.e. 

1 
1 + x  

S(r)=-- 

so we have, in frame B, 

with S given by equation (16). This metric has a conformal singularity at the radius 
r = ro where S(ro) = 0, i.e. 

1 - (K/3) log / ( l +  m/2ro)/(l - m/2ro)l = 0 

i.e. 
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In terms of the Schwarzchild area coordinate p  ̂ defined by 

6 = r(1 + m/2r12 

we have a conformal singularity at 

exp(6/K) > 2m. p^=bo=2m 
exp(6/K) - 1 

In other words the conformal singularity is outside the horizon, which thus becomes 
unphysical. 

4. The value of K 

The arbitrary constant in equation (11) which we have denoted by -Km/3 arises 
because we are solving the vacuum equation (10). K can be evaluated if we introduce 
an explicit source into the problem. For instance if we take the source to be a ‘point 
particle’ to which we assume the Newtonian approximation can be applied, we obtain, 
by comparing the asymptotic behaviour of equation (11) with the Newtonian approxi- 
mation obtained in I, that the constant has the value - m/3, thus making K = 1 (which 
was why we chose the constant in this form). In a previous discussion of the black hole 
problem in frame B (Suggett 1975, reprinted with minor changes as Appendix I of 
Suggett 1976) it was assumed that the result of the collapse of a large body was such a 
Newtonian object, so K was taken equal to 1 and this was called the Newtonian 
boundary condition. 

However, it was pointed out by Dr B F Schutz (private communication) that the 
result of gravitational collapse need not satisfy the Newtonian boundary condition and 
that it should be possible to obtain a value for K by following the dynamics of the actual 
collapse. Preliminary investigations along these lines have, however, not been very 
helpful, since the collapsing body runs into a conformal singularity whilst still in a 
dynamic state, and after the singularity forms the space-time loses its predictability. 

Fortunately, to be able to discuss the possibilities for the static end states we do not 
need an explicit value for K. All we need to obtain the conformal singularity deduced 
above is the result that K > 0. 

The case K C 0 can be excluded immediately, since by equation (13) this would 
imply that X, and hence U, is increasing for large radii. However, this is incompatible 
with our assumptions: 

(i) that mass is positive, 
(ii) that the local matter is dynamically insular, U + 0 at 00. 

The possibility K = 0 is more interesting, since by equation (13) we have X = constant, 
and hence by assumption (216) X = 0. This means that the object generates no mass 
field itself, in which case the total mass field is non-locally generated and hence frames 
A and B become identical, so that the solution in frame B is also the Schwarzchild black 
hole. Is it possible that an object resulting from gravitational collapse should generate 
no mass field (i.e. have no inertial charge, and hence no inertial mass)? The answer yes 
would perhaps be expected on the basis of Price’s theorem (‘a black hole has no hair’) 
which shows how scalar fields are radiated away during collapse. However, as 
mentioned above, the actual collapse in frame B appears to run into an unpredictable 
situation, and hence Price’s theorem is inoperative. The answer is in fact no, as can be 
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seen very simply by the following argument. If i t  were true that the object generated no 
mass field then frame A and frame B would be identical and the Schwarzchild solution 
would be a valid solution in frame B. However, as was pointed out to me by J V Narlikar 
(private communication; the point is also discussed briefly in a footnote in Hoyle and 
Narlikar 1966) the Schwarzchild solution can formally be regarded as a solution of 
Einstein’s equations with matter density 

p = MS(r)  G M = m  

and hence scalar curvature 

R = 8rGMSir)  ( 2 2 )  

but in frame B, equation (14) of I shows that R is identically zero. Hence the 
Schwarzchild solution cannot be a frame B solution and hence K # 0. We must 
therefore have K > 0. 

5. The final outcome of collapse 

Thus we see that the only possible solution in frame B for the exterior field of a compact 
spherical distribution of matter is of the form given by equations (16) and (17) with 
K>O. 

This solution, representing a conformal singularity, must therefore represent the 
final outcome of gravitational collapse. The singularity is not hidden by a horizon, since 
the predicted radius of any possible horizon is in the region of space which is made 
‘non-physical’ by the existence of the conformal singularity. 

6. Conclusion 

The Schwarzchild black hole has been shown to be merely a mathematical construct. 
The edge of the space-time to which our present theories are applicable falls outside the 
radius at which the horizon would be. 

Similar proofs can be given for the Kerr and Kerr-Newman black holes, although 
the extra variable makes the calculations more complicated (details are given, but with 
the assumption of the Newtonian boundary condition, in Suggett 1975, 1976). 
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